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Objective: Neuropathological studies have demonstrated that cerebrovascular disease and Alzheimer disease
(AD) pathology frequently co-occur in older adults. The extent to which cerebrovascular disease influences the progres-
sion of AD pathology remains unclear. Leveraging newly available positron emission tomography (PET) imaging, we
examined whether a well-validated measure of systemic vascular risk and β-amyloid (Aβ) burden have an interactive
association with regional tau burden.
Methods: Vascular risk was quantified at baseline in 152 clinically normal older adults (mean age = 73.5 � 6.1 years)
with the office-based Framingham Heart Study cardiovascular disease risk algorithm (FHS-CVD). We acquired Aβ (11C-
Pittsburgh compound B) and tau (18F-flortaucipir) PET imaging on the same participants. Aβ PET was performed at
baseline; tau PET was acquired on average 2.98 � 1.1 years later. Tau was measured in the entorhinal cortex (EC), an
early site of tau deposition, and in the inferior temporal cortex (ITC), an early site of neocortical tau accumulation asso-
ciated with AD. Linear regression models examined FHS-CVD and Aβ as interactive predictors of tau deposition, adjust-
ing for age, sex, APOE ε4 status, and the time interval between baseline and the tau PET scan.
Results: We observed a significant interaction between FHS-CVD and Aβ burden on subsequently measured ITC tau
(p < 0.001), whereby combined higher FHS-CVD and elevated Aβ burden was associated with increased tau. The inter-
action was not significant for EC tau (p = 0.16).
Interpretation: Elevated vascular risk may influence tau burden when coupled with high Aβ burden. These results sug-
gest a potential link between vascular risk and tau pathology in preclinical AD.
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Several lines of evidence indicate that cerebrovascular
disease burden increases the risk of cognitive impair-

ment in older individuals alone and in combination with

Alzheimer disease (AD) pathology.1–4 Neuropathological
studies have demonstrated that cerebrovascular disease and
AD pathology frequently co-occur in older adults.5–7 The
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presence of cerebrovascular disease pathology at autopsy
appears to lower the threshold at which a given burden of
AD pathology leads to cognitive impairment and
dementia,8,9 highlighting the critical importance of vascu-
lar pathologies to the emergence of clinically evident
symptoms. Consistent with this, we recently demonstrated
that higher levels of vascular risk and elevated β-amyloid
(Aβ) burden synergistically accelerate cognitive decline in
clinically normal older individuals.10 Although vascular
contributions to the clinical syndrome of AD have been
increasingly recognized,11 it remains unclear whether vas-
cular burden influences the accumulation of AD pathol-
ogy in vivo.

Multiple studies suggest that vascular risk factors
assessed during midlife are associated with increased in vivo
Aβ burden measured later in life.12–14 However, the evi-
dence is mixed as to whether a relationship exists between
vascular risk factors and Aβ burden measured concurrently
in older adults,10,12,15 with recent data from our group sug-
gesting no relationship.10 In terms of tau burden, several
studies have demonstrated a possible association between
vascular risk factors and both cerebrospinal fluid (CSF) and
positron emission tomography (PET) markers of tau depo-
sition.14,16,17 Additionally, a recent autopsy study identified
an association between late life systolic blood pressure and
tau pathology burden.18

Motivated by these prior studies, in the present
study we examined associations between vascular risk fac-
tors, Aβ burden, and regional tau burden in clinically nor-
mal older adults participating in the Harvard Aging Brain
Study (HABS). Specifically, we combined the recently
developed tau PET tracer 18F-flortaucipir, 11C-Pittsburgh
compound B PET, and a well-validated measure of sys-
temic vascular risk to investigate whether increased vascu-
lar risk and elevated Aβ burden are synergistically
associated with higher regional tau burden in vivo. We
primarily focused on tau burden in 2 regions of interest
(ROIs): the entorhinal cortex (EC), because it is among
the first regions to develop tau pathology with increasing
age,19,20 and the inferior temporal cortex (ITC), as it is an
early neocortical site of tau deposition associated with
AD.19,21,22

Subjects and Methods
Participants
One hundred fifty-two clinically normal participants from HABS
were included in this study (see Table 1 for demographic infor-
mation). Participants provided written informed consent prior to
study procedures. Study protocols were approved by the Partners
HealthCare Institutional Review Board. At study entry, all par-
ticipants had a global Clinical Dementia Rating23 = 0, had a
Mini-Mental State Examination24 ≥ 27 with educational

adjustment, and performed within education-adjusted norms on
Logical Memory delayed recall.25 All participants underwent a
comprehensive medical and neurological evaluation and none of
the participants had serious medical, psychiatric, or neurological
conditions, recent history of alcoholism, or drug abuse. Exclu-
sionary criteria included a Modified Hachinski Ischemic Score > 4,
history of stroke with residual deficits, and extensive small vessel
ischemic disease. In the present study, participants were required
to have both Aβ and tau PET imaging data, as well as the neces-
sary demographic and medical information to calculate an aggre-
gate measure of vascular risk.

Cardiovascular Disease Risk
Vascular risk was quantified using the office-based Framingham
Heart Study cardiovascular disease risk score (FHS-CVD)26 at
year 1 of HABS (baseline). The FHS-CVD represents a weighted
sum of age, sex, antihypertensive treatment (yes or no), systolic
blood pressure (mmHg), body mass index (calculated as weight

TABLE 1. Baseline Demographic Characteristics

Characteristic

All
Participants,
N = 152

Age, yr, mean (SD) 73.5 (6.1)

Education, yr, mean (SD) 16.2 (2.9)

Females, n (%) 90 (59)

Aβ PET FLR DVR, PVC, mean (SD) 1.35 (0.4)

EC tau PET SUVR, PVC, mean (SD) 1.36 (0.3)

ITC tau PET SUVR, PVC, mean
(SD)

1.47 (0.2)

APOE ε4 carriers, n (%) 47 (31)

FHS-CVD, mean (SD) 31.6 (17.2)

Antihypertensive medication, n (%) 79 (52)

SBP, mmHg, mean (SD) 140.0 (17.8)

BMI, mean (SD) 26.7 (4.6)

History of diabetes, n (%) 13 (9)

Current smoker, n (%) 6 (4)

Time interval between baseline and
tau PET scan, yr, mean (SD)

2.98 (1.1)

APOE ε4 = apolipoprotein E ε4 allele; Aβ = β-amyloid; BMI = body
mass index; DVR = distribution volume ratio; EC = entorhinal cor-
tex; FHS-CVD = Framingham Heart Study cardiovascular disease risk
score; FLR = frontal, lateral temporal and parietal, and retrosplenial
regional uptake; ITC = inferior temporal cortex; PET = positron
emission tomography; PVC = partial volume corrected; SBP = systolic
blood pressure; SD = standard deviation; SUVR = standardized
uptake value ratio.
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in kilograms divided by height in square meters), history of dia-
betes (yes or no), and current cigarette smoking status (yes or
no). The FHS-CVD provides a 10-year probability of future car-
diovascular events (defined as coronary death, myocardial infarc-
tion, coronary insufficiency, angina, ischemic stroke,
hemorrhagic stroke, transient ischemic attack, peripheral artery
disease, and heart failure). In our sample, the FHS-CVD ranged
from 4% to 74% (median = 29%), with higher scores indicating
greater risk of future cardiovascular events.

Brain Imaging
Aβ burden was measured using 11C-Pittsburgh compound B
PET, and tau burden was measured using 18F-flortaucipir (previ-
ously known as AV-1451 or T807). PET imaging was carried
out at the Massachusetts General Hospital PET facility (ECAT
EXACT HR+ scanner; Siemens, Erlangen, Germany). Aβ PET
data used in the present study were obtained during year 1 of
HABS (baseline). Tau PET was introduced into HABS mid-
study, with the majority of participants undergoing tau PET at
year 4 of the study (2.98 � 1.1 years after study entry). Detailed
Aβ and tau PET protocols have been previously described.21 As
in prior studies from our group, Aβ PET measurements were
represented as a distribution volume ratio across a composite of
frontal, lateral temporal and parietal, and retrosplenial regions
(given the high degree of collinearity among neocortical
regions).21,27 Tau PET measures were computed as standardized
uptake value ratios within FreeSurfer-defined (v5.3) ROIs. As
mentioned above, we focused our analyses on 2 predefined
ROIs: the EC and the ITC. Because we had no a priori hypothe-
ses regarding laterality, regions were averaged across left and right
hemispheres to reduce the number of comparisons. Due to off-
target binding of flortaucipir in the portions of the choroid
plexus adjacent to the hippocampus, we did not examine tau
burden in this region.21,28 Cerebellar gray matter (as defined by
FreeSurfer) served as the reference region for Aβ and tau PET
data. PET data were corrected for partial volume effects using
the geometric transfer matrix method.29 Of note, analyses using
non–partial volume corrected PET data yielded nearly identical
results (not reported).

Statistical Analyses
Statistical analyses were performed using R (v3.2.4). All continu-
ous variables were z-transformed prior to model entry. We used
partial Pearson correlations to examine the relationships between
FHS-CVD, Aβ burden, and tau burden in the EC and ITC,
adjusting for age and sex. Of primary interest in the present
study was whether baseline FHS-CVD and Aβ burden interact
to predict subsequent tau in the EC and ITC. We used linear
regression models to examine this question, controlling for age,
sex, apolipoprotein E (APOE) ε4 status (carrier/noncarrier), and
the time interval between baseline and the tau PET scan
(to account for differences across participants related to when tau
PET was acquired).

We next conducted an exploratory whole-brain regional
analysis to examine whether the interaction of baseline FHS-
CVD and Aβ burden on subsequent tau deposition extended to

regions beyond the 2 prespecified ROIs examined in the primary
analyses (EC and ITC). As above, this analysis averaged across
left and right hemispheres, and we adjusted for age, sex, APOE
ε4 status, and the time interval between baseline and the tau
PET scan. Family-wise error (FWE) correction was used to
maintain an α of ≤0.05 in the setting of multiple ROI compari-
sons (corresponds to an uncorrected p value of ≤0.0036).

Results
Baseline demographic information is presented in Table 1.
After adjusting for age and sex, there was no relationship
between FHS-CVD and Aβ burden (rpartial = −0.04,
p = 0.59). We observed a significant but weak relationship
between FHS-CVD and tau burden in the ITC (rpartial = 0.19,
p = 0.02). The relationship between FHS-CVD and tau bur-
den in the EC was not statistically significant (rpartial = 0.12,
p = 0.15). Consistent with previous findings,17,30,31 we found
a significant relationship between Aβ and tau burden in both
the EC (rpartial = 0.50, p < 0.001) and ITC (rpartial = 0.46,
p < 0.001). A linear regression analysis suggested that APOE
ε4 status was not related to FHS-CVD (β = −0.05, standard
error = 0.12, p = 0.70) after adjusting for age and sex.

The primary goal of the study was to investigate
whether baseline FHS-CVD and Aβ burden have an inter-
active association with subsequent tau burden in 2 prede-
fined ROIs (EC and ITC). We found a significant
interaction between FHS-CVD and Aβ burden in relation
to tau burden in the ITC, whereby the combination of
higher FHS-CVD and higher Aβ burden was associated
with elevated tau deposition in this region. We did not
find a significant interaction between FHS-CVD and Aβ
burden in predicting tau burden in the EC (Fig 1,
Table 2).

To explore whether the interaction of FHS-CVD
and Aβ burden was limited to the ITC, we next per-
formed an exploratory analysis across a wider set of
FreeSurfer-defined cortical ROIs, averaged across hemi-
spheres. After adjusting for covariates and employing
FWE correction for multiple comparisons, we observed
that higher FHS-CVD and higher Aβ burden were inter-
actively associated with elevated tau deposition in medial
temporal (parahippocampus), lateral temporal (ITC and
banks of the superior temporal sulcus), and posterior cin-
gulate regions (Fig 2).

Lastly, we investigated whether specific components
of the FHS-CVD were driving the aforementioned inter-
action with Aβ burden in relation to subsequent tau depo-
sition in the ITC. To address this question, we
decomposed the FHS-CVD into its constituent measures
and interacted each vascular component with Aβ to pre-
dict subsequent ITC tau. As summarized in Table 3, we
observed a significant interaction between all components
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of the FHS-CVD and Aβ burden in relation to ITC tau,
with the exception of a history of diabetes. However, it
should be noted that the number of study participants
with a history of diabetes was relatively small (n = 13, 9%
of the sample; see Table 1).

Discussion
In this study of clinically normal older adults, we observed
that higher vascular risk in the setting of elevated Aβ
burden was associated with increased tau deposition in
temporal neocortical regions known to be early sites of
AD-related tau deposition.19,21 Importantly, these findings
remained after adjusting for age, sex, APOE ε4 status, and
the time interval between baseline and the tau PET scan.
Although additional studies are necessary to confirm our
findings, the present results suggest that vascular risk fac-
tors may influence the progression of tau pathology in
individuals with elevated Aβ burden.

A growing body of research supports the hypothesis
that Aβ is necessary, but not sufficient, to predict immi-
nent cognitive decline along the AD trajectory.32–34 The
present findings raise the possibility that elevated vascular
risk may represent a “second hit” that further potentiates
the spread of Aβ-related neocortical tau pathology. Given
the close linkage of tau pathology to cognitive
decline,35,36 the synergistic interaction between vascular

risk and Aβ burden may be one route by which clinical
symptoms associated with AD are manifested.9,10,37–39

We did not observe a significant interaction between
FHS-CVD and Aβ burden in relation to tau in the
EC. One possible explanation for this observation is that
the EC ROI is relatively small and may be susceptible to
partial volume effects due to its shape and close proximity
to CSF. Accordingly, measurements of tau PET in the EC
may be noisier than the ITC even when partial volume
correction is employed (as in the present analyses). Consis-
tent with this possibility, an exploratory analysis suggested
an interaction between FHS-CVD and Aβ burden on tau
deposition in larger, neighboring medial temporal regions,
namely parahippocampal cortices (another site of early tau
deposition).19,20,40,41 Although these exploratory findings
should be interpreted cautiously and require replication in
larger samples, the pattern of results suggests that the
interaction of FHS-CVD and Aβ may influence tau depo-
sition in medial temporal, lateral temporal, and posterior
cingulate regions.

The underlying mechanism by which vascular risk
and Aβ pathology interact to promote elevated neocortical
tau deposition remains unclear. Several studies suggest
that cerebrovascular disease contributes to AD pathogene-
sis via altering Aβ production and/or clearance,42,43 with
several recent studies demonstrating an association
between midlife vascular risk factors and later-life Aβ
burden.12–14 However, we did not find evidence of a

FIGURE 1: Plots demonstrating the interaction between the Framingham Heart Study cardiovascular disease risk score (FHS-
CVD) and β-amyloid (Aβ) burden in relation to tau burden. Plots illustrate the predicted trajectories from the full regression
model adjusted for age, sex, APOE ε4 status, and the time interval between baseline and the tau positron emission tomography
(PET) scan. For visualization purposes, low and high levels of Aβ burden are represented based on distribution volume ratio
(DVR) values at the 25th percentile and 75th percentiles, respectively. PET data were partial volume corrected. The interaction
was significant for tau in the inferior temporal cortex (left panel), such that combined higher FHS-CVD and elevated Aβ burden
was associated with higher tau burden in this region. The effect was not significant for tau in the entorhinal cortex (right panel).
Shaded regions represent the 95% confidence interval for the regression line. FLR = frontal, lateral temporal and parietal, and
retrosplenial regional uptake; FTP = flortaucipir; PIB = Pittsburgh compound B; SUVR = standardized uptake value ratio.
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relationship between vascular risk and concurrent mea-
sures of Aβ burden in our sample. It is possible that the
effects of vascular risk on tau burden may be mediated by
toxic Aβ species not readily detected with PET imaging
(eg, oligomeric Aβ species).44,45 Another possible explana-
tion is that vascular disease may render neurons more vul-
nerable to the toxic effects of Aβ, in turn promoting
neocortical tau deposition in injured neurons and subse-
quent trans-synaptic spread of pathologic tau species.

Although we were most interested in the FHS-
CVD as an aggregate measure of vascular risk, we did
examine whether specific components of the FHS-CVD
were driving the interaction with Aβ burden in relation
to ITC tau. In these analyses, all components of the
FHS-CVD interacted with Aβ burden to significantly
predict increased ITC tau deposition, with the exception
of a history of diabetes. It should be noted, however, that

only a small number of study participants reported a his-
tory of diabetes (n = 13, 9%), and therefore this latter
finding should be interpreted with caution. Overall, the
consistently observed synergistic interactions between
individual vascular risk factors and Aβ burden on tau
deposition support the robustness of our finding using a
multivariate vascular risk measure, and highlight the util-
ity of aggregate measures of vascular risk when investigat-
ing relationships between vascular health and tau
pathology in preclinical AD.

As with other studies of this type, consideration of
the study sample composition is highly relevant to the
interpretation and generalizability of the results. HABS
participants are generally well educated and predominately
Caucasian, sample characteristics that may impact the gen-
eralizability of these findings. HABS excludes participants
with evidence of extensive small vessel disease, stroke,

TABLE 2. Summary of Linear Regression Models Examining the Interactive Effect of the FHS-CVD and Aβ
Burden on Tau Deposition

β Estimate Standard Error t p

EC tau ~ Aβ*FHS-CVD + Aβ + FHS-CVD + age + sex + APOE ε4 + time interval

Aβ*FHS-CVD 0.11 0.08 1.40 0.16

Aβ 0.50 0.08 6.22 <0.001

FHS-CVD 0.20 0.10 1.92 0.06

Age 0.15 0.08 1.76 0.08

Sex, M −0.39 0.18 −2.11 0.04

APOE ε4 carrier 0.07 0.17 0.43 0.67

Time interval 0.01 0.07 0.16 0.87

R2 of model = 0.35

ITC tau ~ Aβ*FHS-CVD + Aβ + FHS-CVD + age + sex + APOE ε4 + time interval

Aβ*FHS-CVD 0.28 0.07 3.77 <0.001

Aβ 0.53 0.08 7.00 <0.001

FHS-CVD 0.31 0.09 3.24 0.001

Age 0.13 0.08 1.70 0.09

Sex, M −0.31 0.17 −1.85 0.07

APOE ε4 carrier −0.03 0.16 −0.20 0.84

Time interval 0.18 0.06 2.84 0.005

R2 of model = 0.42

Linear regression models with FHS-CVD and Aβ burden as interactive predictors of tau deposition, repeated for each tau region (EC and ITC). All
continuous variables were z-transformed prior to model entry. T values represent the β estimate divided by the standard error. Time interval refers to
the time lag between baseline and the tau positron emission tomography scan.
APOE ε4 = apolipoprotein E ε4; Aβ = β-amyloid; EC = entorhinal cortex; FHS-CVD = Framingham Heart Study cardiovascular disease risk score;
ITC = inferior temporal cortex; M = male.
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uncontrolled diabetes, and unstable hypertension, and
therefore our study sample may not be representative of
individuals with very high levels of systemic vascular risk.
In addition, individuals with both high vascular risk and
high Aβ burden are likely under-represented in the study
sample, as they are more likely to be cognitively impaired
and therefore excluded from study participation. Although
these exclusionary criteria do not allow us to study the full
spectrum of vascular risk, our results suggest that even

relatively modest levels of vascular risk can interact with
Aβ burden to increase neocortical tau pathology in clini-
cally normal older adults.

Several additional limitations should be noted. Our
findings are based on cross-sectional data; longitudinal
studies with serial PET imaging will be critical to under-
stand the temporal relationships between vascular risk, Aβ
burden, and tau accumulation. In addition, future work
in this and other cohorts should examine the extent to

FIGURE 2: Exploratory analysis depicting the interaction between the Framingham Heart Study cardiovascular disease risk score
(FHS-CVD) and β-amyloid (Aβ) burden on tau burden in Free Surfer-defined regions. Regions were averaged across left and right
hemispheres. In all regions shown, combined higher FHS-CVD and elevated Aβ was associated with significantly higher tau
burden. Color bars indicate the t statistic for the association, adjusting for age, sex, APOE ε4 status, and the time interval
between baseline and the tau positron emission tomography scan. Regions shown are p < 0.05 corrected for multiple
comparisons (family-wise error).

TABLE 3. Summary of Linear Regression Models Examining the Interactive Effect of the FHS-CVD Components
and Aβ Burden on Tau Deposition in the ITC

β Estimate
Standard
Error t p

R2 of the
Model

ITC Tau ~ Aβ*FHS-CVD Component + Aβ + FHS-CVD Component + Age + Sex + APOE ε4 + Time Interval

Aβ*BMI 0.25 0.07 3.29 0.001 0.38

Aβ*SBP, mmHg 0.22 0.07 2.93 0.004 0.38

Aβ*HTN med 0.44 0.13 3.49 <0.001 0.42

Aβ*smoking status 0.81 0.31 2.60 0.01 0.35

Aβ*diabetes 0.51 0.38 1.34 0.18 0.33

Linear regression models with an individual FHS-CVD component and Aβ burden as interactive predictors of tau deposition in the inferior temporal
cortex, repeated for each vascular component of the FHS-CVD. Each row summarizes the results from a separate linear regression model. All continu-
ous variables were z-transformed prior to model entry. T values represent the β estimate divided by the standard error.
APOE ε4 = apolipoprotein E ε4; Aβ = β-amyloid; BMI = body mass index; FHS-CVD = Framingham Heart Study cardiovascular disease risk score;
HTN med = treatment with antihypertensive medication; ITC = inferior temporal cortex; SBP = systolic blood pressure.

February 2019 277

Rabin et al.: Vascular Risk, Aβ, and Tau



which tau accumulation mediates the impact of elevated
vascular risk on cognitive decline in individuals with ele-
vated Aβ.46 Finally, we interpret the interaction of FHS-
CVD with Aβ burden to represent that higher vascular
risk in the context of elevated Aβ burden gives rise to
higher tau burden; however, alternate interpretations of
these findings remain quite possible. That is, this same
interaction can also be interpreted as higher Aβ burden in
the setting of elevated vascular risk leading to greater tau
deposition. As such, the results here do not address
whether elevated Aβ burden precedes elevated vascular risk
or vice versa. This caveat is particularly important in the
present study, as individuals with the highest levels of vas-
cular risk may not be well represented in the study
sample.

In conclusion, our results suggest that elevated vascular
risk may influence neocortical tau deposition when coupled
with high Aβ burden. Given that tau PET will likely become
increasingly integral to AD clinical trials, these findings indi-
cate the importance of accounting for vascular risk when
assessing tau accumulation in clinical research settings. Per-
haps most importantly, these findings support the rationale
behind interventional studies designed to decrease systemic
vascular risk (alone or in combination with Aβ-lowering
approaches) as a means of attenuating the progression of Aβ-
related neocortical tau pathology.47–49
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