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WOOD ET AL.

Abstract

INTRODUCTION: We examined whether sex modifies the association between APOE
£2 and cognitive decline in two independent samples.

METHODS: We used observational data from cognitively unimpaired non-Hispanic
White (NHW) and non-Hispanic Black (NHB) adults. Linear mixed models examined
interactive associations of APOE genotype (¢2 or ¢4 carrier vs. £€3/e3) and sex on
cognitive decline in NHW and NHB participants separately.

RESULTS: In both Sample 1 (N = 9766) and Sample 2 (N = 915), sex modified the associ-
ation between APOE ¢2 and cognitive decline in NHW participants. Specifically, relative
to APOE €3/e3, APOE ¢2 protected against cognitive decline in men but not women.
Among APOE &2 carriers, men had slower decline than women. Among APOE £3/¢3 car-
riers, cognitive trajectories did not differ between sexes. There were no sex-specific
associations of APOE 2 with cognition in NHB participants (N = 2010).

DISCUSSION: In NHW adults, APOE ¢2 may protect men but not women against

cognitive decline.
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decline.

1 | BACKGROUND

Women have a greater lifetime risk of developing Alzheimer’s disease
(AD) dementia than men.! While some studies observe that women’s

1,23 other studies report

increased risk is related to longer surviva
that sex/gender disparities exist beyond what can be explained by
female longevity alone.* Mounting evidence suggests that biological
mechanisms underpin sex differences in AD risk and progression.”~10

The apolipoprotein E (APOE) gene encodes a protein that facilitates
lipid transport in the brain.'* APOE €3 is the most common allele’? and
is neutral in relation to risk for AD dementia.'* APOE &4 is associated
with a higher risk of AD dementia®® (mostly in non-Hispanic White
[NHWI] populations'?), whereas APOE ¢2 is associated with a lower
risk of AD dementia.l® Studies suggest that there are sex differences
in the effects of APOE ¢4 on AD risk, such that women with APOE ¢4
are disproportionately vulnerable to cognitive impairment®® and AD>
compared to their counterpart men.

Although aless robust literature, APOE £2 may also have sex-specific

effects on AD risk. The few reports on sex-specific effects of APOE

Alzheimer’s disease, APOE, cognitive decline, race/ethnicity, sex differences

» We studied sex-specific apolipoprotein E (APOE) 2 effects on cognitive decline.

* In non-Hispanic White (NHW) adults, APOE &2 selectively protects men against

* Among men, APOE £2 was more protective than APOE £3/¢3.

* Inwomen, APOE ¢2 was no more protective than APOE £3/¢3.

* Among APOE &2 carriers, men had slower decline than women.

* There were no sex-specific APOE 2 effects in non-Hispanic Black (NHB) adults.

€2 have been in the context of studies focused on APOE ¢4 sex dif-
ferences. One study found that in men but not women, APOE ¢2 was
associated with reduced risk of progression from normal cognition
to mild cognitive impairment (MCI) or AD dementia.l® By contrast, a
meta-analysis found that in cognitively unimpaired older adults, APOE
€2/e3 decreased the risk of AD dementia more strongly in women
than in men.’” That same meta-analysis reported the opposite pat-
tern for APOE ¢2 homozygosity (N<30/sex), such that APOE £2/c2
was protective against AD dementia in men but not in women.'”
Other studies examining sex-specific effects of APOE €2 on cognition
have also yielded mixed results, with some showing greater protec-
tion for women and others showing greater protection for men.18-20
These studies had small numbers of APOE €2 carriers, and were
cross-sectional in design or had limited longitudinal follow-up.18-20
Allele frequencies can vary widely between populations of differ-
ent ancestral backgrounds (i.e., population stratification), which can
lead to unreliable associations between genetic factors and phenotypic
outcomes.?122 There is evidence that APOE 4 confers differential risk

for AD across races. While APOE ¢4 is more common among Black
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RESEARCH IN CONTEXT

1. Systematic Review: We performed a literature search
using traditional sources (e.g., PubMed, Google Scholar).
The limited number of existing studies examining
sex-specific effects of apolipoprotein E (APOE) €2 on
Alzheimer’s disease (AD) risk have yielded conflicting
results. Studies were limited by small numbers of APOE
2 carriers and lack of longitudinal follow-up.

2. Interpretation: Across two independent samples of non-
Hispanic White (NHW) adults, we show that APOE ¢2
protects men but not women against cognitive decline.
We did not observe sex-specific effects of APOE £2 in non-
Hispanic Black adults. These findings are important for
understanding biological contributions to sex differences
in AD risk, which is crucial for developing sex-specific AD
treatment and prevention strategies.

3. Future Directions: Future research should seek to repli-
cate and extend these findings in diverse samples. Clari-
fying the sex-specific effects of APOE €2 will advance our
understanding of the biological drivers of sex disparities
in AD.

(vs. White) populations, the association of APOE ¢4 with risk for cogni-
tive decline and AD dementia may be attenuated in Black adults.24-2¢

In the present study, we carried out an in-depth investigation
of sex differences in associations between APOE ¢2 and longitudi-
nal cognition. We first examined sex differences using pooled data
from cognitively unimpaired adults participating in either the National
Alzheimer’s Coordinating Center (NACC) or Rush Alzheimer’s Dis-
ease Center cohort studies (Sample 1). To control for population
stratification?"2% and potentially differing effects of APOE across

24-26 e performed analyses separately in NHW

racial/ethnic groups,
and non-Hispanic Black (NHB) participants. On finding sex-specific
effects in NHW participants, we then sought to replicate these find-
ings in anindependent sample of participants from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and Pre-symptomatic Evaluation of
Experimental or Novel Treatments for Alzheimer Disease (Prevent-

AD) (Sample 2).

2 | METHODS
2.1 | Participants

Datawere obtained from four independent sources: (1) NACC; (2) Rush
Alzheimer’s Disease Center cohort studies: Religious Orders Study
(ROS), Memory Aging Project (MAP), and Minority Aging Research
Study (MARS); (3) ADNI; and (4) Prevent-AD. Sample 1 consisted of
data from NACC and ROS/MAP/MARS. Sample 2 consisted of data
from ADNI and Prevent-AD. Research procedures were approved

by the relevant ethics committees and participants provided written
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informed consent. This study followed the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) reporting
guidelines for cohort studies.

Since APOE €2 protects against cognitive decline,?” we restricted
our sample to participants classified as cognitively unimpaired at base-
line. This allowed us to maintain a representative proportion of 2
carriers and to examine early cognitive changes with respect to APOE
genotype. We also required that participants were >50 years old at
baseline and had at least one follow-up cognitive assessment. In NACC,
cognitively unimpaired is defined as a Clinical Dementia Rating (CDR)
global score of 0.28 In ROS/MAP/MARS, cognitively unimpaired is
defined as the absence of MCl or dementia.2?3° In ADNI and Prevent-
AD, cognitively unimpaired is defined according to several criteria, one
of which is a CDR global score of 0.31:32 |n the present study, we
only included participants who self-identified as NHW or NHB since
these were the largest racial/ethnic groups across data sources. Fur-
ther details on the sample selection process are described in Figure S1

in the supplemental material.

2.2 | Cognition

All four data sources (i.e., NACC, ROS/MAP/MARS, ADNI, Prevent-
AD) assess cognition approximately annually. For each data source, we
created a comparable cognitive composite that was weighted toward
episodic memory (see supplemental material for specific tests). To
calculate the composite, we z-transformed raw test scores using the
mean and standard deviation of the baseline study samples, and then
computed the average of the standardized scores.

2.3 | Genotype

We used publicly available APOE genotype data to classify participants
as €2, €3/e3, or €4 carriers. The samples had relatively few APOE 2
homozygotes (N = 56 in NACC; N = 13 in ROS/MAP/MARS, N = 1
in ADNI, N = 0 in Prevent-AD), and therefore participants with one
or two copies of €2 were examined together. APOE 3 homozygotes
were the reference group. APOE €2/¢4 carriers were excluded due to
the opposing effects of €2 and ¢4 alleles on AD risk.2’ All samples met

Hardy-Weinberg Equilibrium expectations.33

2.4 | Statistical analysis

Analyses were conducted in R (v.4.1.2). We used t-tests and x2 tests
to assess differences in baseline characteristics between men and
women as well as across samples. We used linear mixed models to
examine the interactive effects of APOE allele (¢2 and €4 vs. reference
£3/e3), sex (reference female), and time (years from baseline) on lon-
gitudinal cognition separately in NHW and NHB participants. Where
possible sex-specific APOE ¢2 effects were observed, we then per-

formed sex- and genotype-stratified analyses. Sex-stratified analyses
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examined the two-way interaction between APOE allele and time on
cognition, allowing us to compare cognitive trajectories of APOE ¢2
versus £3/e3 carriers among men and women separately. Genotype-
stratified analyses examined the two-way interaction between sex and
time on cognition, allowing us to compare cognitive trajectories of men
and women APOE ¢2 carriers as well as men and women APOE €3/e3
carriers. All models included random intercepts and slopes. As in a
previous study,3* including an additional quadratic term for time (to
account for accelerated decline with aging) resulted in better model fit
compared to models without this term (p < .05). Therefore, all models
included this term.

We first examined sex differences in associations between APOE
¢2 and cognitive decline in NHW and NHB participants from Sample
1. On observing sex-specific effects in NHW participants, we sought
to replicate these effects in an independent sample of NHW partici-
pants (Sample 2). In exploratory analyses, we examined whether the
sex-specific effects of APOE 2 on longitudinal cognition were more
pronounced at older ages. To do so, we repeated the main analyses
after restricting the baseline age according to four cutoff values: age
>65,>70,>75,and >80 years. Finally, to contextualize the sex-specific
APOE ¢2 findings, we compared them against sex-specific APOE ¢4

findings.1>16

241 | Covariates

In all analyses, we adjusted for data source (i.e., NACC vs.
ROS/MAP/MARS or ADNI vs. Prevent-AD), baseline age, years of
education, and their interactions with time. To account for practice
effects on neuropsychological tests, we included a term for the square
root of the number of previous study visits. This method assumes the
largest improvement in performance after the first testing session,
with diminishing returns on subsequent sessions.3> If this covari-
ate was not significant, it was removed from the models. Because
vascular risk factors are associated with cognitive decline,%%7 we
also adjusted for baseline vascular risk and its interaction with time.
Vascular risk was quantified using a summary score®® that includes the
presence/absence of up to five conditions (diabetes, hypertension, high
cholesterol, stroke, and heart conditions; see supplemental material
for details). Finally, to determine whether length of cognitive follow-up
impacted the results, we re-ran all models after adjusting for total
number of visits. When follow-up visits were explicitly modeled, the
estimates for the effects of interest were essentially unchanged. For
simplicity, we report the results without including terms for visit

number.

3 | RESULTS
3.1 | Demographic characteristics

Table 1 summarizes the demographic characteristics for NHW and
NHB participants in Sample 1 and NHW participants in Sample 2

(Tables S1 and S2 summarize demographic data for each data source
separately). In Sample 1 (NACC and ROS/MAP/MARS), 9766 NHW
and 2010 NHB participants met inclusion criteria. In Sample 2 (ADNI
and Prevent-AD), 915 NHW participants met inclusion criteria. With
respect to NHW participants, Sample 1 was slightly older than Sample
2 (73.0 vs. 70.1 years), had a higher proportion of women (65.0% vs.
59.1%), a slightly higher proportion of APOE ¢2 carriers (12.9% vs.
11.8%), and greater number of study visits (median of 6 vs. 5 visits).

3.2 | Sex-specific associations of APOE 2 with
cognitive decline in NHB participants

In Sample 1, the interaction between sex, APOE ¢2, and time on cogni-
tive decline was not significant in NHB participants (8 = —0.011, 95%
confidence interval [Cl]: —0.153 to 0.131, p = .88; Table S3; Figure 1).
The lower-order two-way interaction between sex and APOE ¢2 was
also not significant (8 = 0.056, 95% Cl: —0.188 to 0.301, p = .65; Table
S3), suggesting that there are no sex-specific associations of APOE 2
with longitudinal cognition or with cognition collapsed across all time-
points. We next tested the two-way interaction between APOE 2 (vs.
€3/£3) and time on cognitive decline (adjusting for sex). In this analysis,
APOE ¢2 carriers did not exhibit significantly slower cognitive decline
relative to £3/£3 carriers (8 = 0.046, 95% Cl: —0.012 to 0.104, p = .12;
Table S3; Figure S2). Similar findings were observed in sex-stratified
analyses (Table S3). With respect to sex-specific effects of APOE 4, we
observed a non-significant interaction between male sex, APOE ¢4, and
time in NHB participants (8 = 0.103, 95% CIl: —0.017 to 0.223, p = .09;
Table S3; Figure S3). Sex- and genotype-stratified analyses showed that
women with APOE ¢4 exhibited faster cognitive decline relative to both
women carrying ¢3/e3 and men carrying ¢4 (Table S3).

3.3 | Sex-specific associations of APOE 2 with
cognitive decline in NHW participants

In NHW participants from Sample 1, there was a significant inter-
action between sex, APOE ¢2, and time (Tables 2 and S4; Figure 2).
In sex-stratified analyses, men with APOE ¢2 exhibited slower cogni-
tive decline than men with APOE £3/¢3 (Tables 2 and S4). By contrast,
cognitive trajectories did not differ between women with APOE £2 ver-
sus £3/e3 (Tables 2 and S4). In genotype-stratified analyses, cognitive
trajectories differed by sex among APOE ¢2 carriers, but not among
APOE £3/e3 carriers. Specifically, among APOE ¢2 carriers, men exhib-
ited slower decline relative to women, whereas rates of decline were
similar between men and women carrying APOE £3/23 (Tables 2 and S4).

Given the relatively large number of participants in NACC
(N = 7931, N women = 4980, 62.8%) and ROS/MAP (N = 1835, N
women = 1364, 74.3%), we examined whether the pattern of results
was present in each data source separately. In NACC, there was a sig-
nificant interaction between male sex, APOE 2, and time on cognitive
decline (Tables 2 and S5; Figures S4 and S5). In ROS/MAP, the same

three-way interaction was not significant (Tables 2 and Sé; Figures S4
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TABLE 1 Baseline demographic and clinical characteristics by racial/ethnic group and cohort.

Non-Hispanic Black participants in Sample 1 (NACC & ROS/MAP/MARS)

Total sample Women Men
Variables (n=2010) (n= 1583, 78.8%) (n=427,21.2%)
Age in years, mean (SD) 71.3(7.59) 71.4(7.57) 71.0(7.67)
Education in years, mean (SD) 14.9(3.10) 14.9 (3.02) 14.9 (3.41)
APOE €2 carriers, n (%) 336(16.7) 263(16.6) 73(17.1)
€2/e3,n (%) 316(15.7) 248 (15.7) 68(15.9)
e2/e2,n (%) 20 (1.00) 15(0.95) 5(1.17)
APOE ¢4 carriers, n (%) 662 (32.9) 506 (32.0) 156 (36.5)
€3/e4,n (%) 595 (29.6) 454 (28.7) 141(33.0)
e4/e4,n (%) 67(3.33) 52(3.28) 15(3.51)
APOE £3/e3 carriers, n (%) 1012 (50.3) 814 (51.4) 198 (46.4)
Total number of visits, median (SD) 5(3.96) 6(4.02)* 5(3.72)*
e2 carriers, median (SD) 6(4.11) 6(4.20) 6(3.79)
¢4 carriers, median (SD) 5(3.70) 5(3.80) 5(3.33)
£3/3 carriers, median (SD) 6(4.05) 6(4.07) 5(3.92)
Vascular risk score (range 0-1), mean (SD) 0.36(0.21) 0.36(0.21) 0.36(0.22)

Non-Hispanic White participants in Sample 1 (NACC & ROS/MAP)

Total sample Women Men
Variables (n=9766) (n= 6344, 65.0%) (n=3422,35.0%)
Age in years, mean (SD) 73.0(9.00) 73.0(9.14) 72.9(8.75)
Education in years, mean (SD) 16.3(2.83) 16.0(2.75)* 16.9 (2.90)*
APOE €2 carriers, n (%) 1260(12.9) 840(13.2) 420(12.3)
€2/3,n (%) 1211(12.4) 814(12.8) 397(11.6)
€2/e2,n (%) 49(0.50) 26(0.41) 23(0.67)
APOE ¢4 carriers, n (%) 2622 (26.8) 1670 (26.3) 952 (27.8)
€3/e4,n (%) 2362 (24.2) 1508 (23.8) 854 (25.0)
e4/e4,n (%) 260 (2.66) 162 (2.55) 98(2.86)
APOE £3/e3 carriers, n (%) 5884 (60.2) 3834 (60.4) 2050 (59.9)
Total number of visits, median (SD) 6(4.41) 6(4.48)* 5(4.27)*
e2 carriers, median (SD) 6(4.53) 6(4.49) 6(4.61)
¢4 carriers, median (SD) 5(4.18) 6(4.26)* 5(4.02)*
£3/3 carriers, median (SD) 6(4.48) 6(4.56)* 5 (4.30)
Vascular risk score (range 0-1), mean (SD) 0.26(0.21) 0.25(0.20)* 0.28(0.21)*

Non-Hispanic White participants in Sample 2 (ADNI & Prevent-AD)

Total sample Women Men
Variables (n=915) (n=542,59.1%) (n=373,40.8%)
Age in years, mean (SD) 70.1(7.35) 68.8(7.17)* 71.9(7.24)*
Education in years, mean (SD) 16.2(2.92) 15.7 (2.96)* 16.9(2.71)*
APOE €2 carriers, n (%) 108 (11.8) 55(10.1) 53(14.2)
€2/e3,n (%) 107 (11.7) 55(10.1) 52(13.9)
e2/e2,n (%) 1(0.11) 0(0) 1(0.27)
APOE ¢4 carriers, n (%) 287 (31.4) 176 (32.5) 111(29.8)
e3/e4,n (%) 263(28.7) 160 (29.5) 103 (27.6)
e4/e4,n (%) 24(2.62) 16 (2.95) 8(2.14)
APOE £3/e3 carriers, n (%) 520(56.8) 311(57.3) 209 (56.0)

(Continues)
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TABLE 1 (Continued)

Non-Hispanic White participants in Sample 2 (ADNI & Prevent-AD)

Variables Total sample
(n=915)
Total number of visits, median (SD) 5(2.86)
e2 carriers, median (SD) 5(2.61)
¢4 carriers, median (SD) 5(2.70)
£3/3 carriers, median (SD) 5(2.99)
Vascular risk score (range 0-1), mean (SD) 0.37(0.19)

Women Men

(n=542,59.1%) (n=373,40.8%)
5(2.70) 5(3.07)
5(2.25) 5(2.96)
5(2.60) 5(2.86)
5(2.83) 5(3.21)

0.37(0.20) 0.37(0.18)

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; MARS, Minority Aging Research Study; MAP, Memory Aging Project; NACC, National
Alzheimer’s Coordinating Center; Prevent-AD, Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease; ROS, Religious

Orders Study; SD, standard deviation.

*p < .05. P-values represent results of independent samples t-tests and chi-square tests comparing men versus women.

NHB participants, Sample 1
(NACC & ROS/MAP/MARS)

Men | | Women |
054 H APOE €2
e H APOE £3/e3
-1.01 = APOE ¢4
-1.54
Q -20-
[75)
e
S 0 5 10 15 20 O 5 10 15 20
< apoEe2 || aPoEesks |
(@]
O 45l = Men
e H Women
-1.01
-1.54
-2.0

0 5 10 15 20 0 5 10 15 20
Time (years)

FIGURE 1 Three-way interaction between sex, APOE, and time on
cognitive decline in non-Hispanic Black (NHB) participants in Sample 1
(NACC & ROS/MAP/MARS). Plots depict marginal effects, showing
change in cognition (standardized score) over time, stratified by sex
and genotype (APOE 4 plot not shown). There were no significant sex
differences in associations between APOE 2 and global cognitive
decline. The models are adjusted for covariates. Shaded regions
represent 95% confidence intervals.

and S5). However, sex- and genotype-stratified analyses revealed a
similar pattern of findings in both data sources (Tables 2, S5, and Sé).
Sex-stratified analyses showed that men with APOE ¢2 had a pattern
of slower cognitive decline than men with APOE €3/e3, although the
interaction was not statistically significant in ROS/MAP (3 = 0.149,
95% Cl: —0.022 to 0.319, p = .09; Tables 2 and Sé). In both cohorts,
women with APOE ¢2 did not have slower decline than women carrying
APOE £3/23. In genotype-stratified analyses, men with APOE 2 had
significantly slower decline than women with APOE ¢2. Similarly, men
and women APOE £3/e3 carriers did not exhibit different cognitive

trajectories.

Next, we sought to replicate the main sex-specific findings in an
independent sample of NHW participants from ADNI and Prevent-
AD (Sample 2). We again observed a significant interaction between
male sex, APOE &2, and time (Tables 2 and S7; Figure 3), with Sample
2 showing a larger effect than Sample 1 (as demonstrated by a larger
standardized beta coefficient). Next, we performed sex-stratified anal-
yses. In men, APOE ¢2 carriers had a non-significant pattern of slower
decline than €3/e3 carriers. While this finding did not reach statisti-
cal significance, the effect size was similar to that reported in Sample
1. Surprisingly, women with APOE ¢2 had a non-significant pattern of
faster decline compared to women with APOE £3/£3 (Tables 2 and S7). In
genotype-stratified analyses, men with APOE ¢2 exhibited significantly
slower decline than women with €2, whereas the rates of decline did
not differ between men and women with APOE £3/¢3 (Tables 2 and S7).
The effect sizes in these genotype-stratified analyses were equivalent
to or larger than those observed in Sample 1.

In exploratory analyses, we examined whether the sex-specific
effect of APOE 2 on cognitive decline differed across increasing base-
line age cutoffs (age >65, >70, >75, and >80 years). In Sample 1,
we observed that the magnitude of the three-way interaction term
increased in a positive direction as baseline age increased (Table S8).
In Sample 2, we observed a similar increase in magnitude among par-
ticipants aged 50 through 70 (Table S9). However, the magnitude of the
interaction term began to decrease again above the age of 75. This is
likely due to the considerably smaller sample sizes at these older ages
(Table S9). Together, these findings suggest that male-specific APOE £2

protection may become more pronounced in older age.

3.4 | Sex-specific associations of APOE ¢4 with
cognitive decline in NHW participants

To contextualize the APOE ¢2 findings in NHW participants in Sample
1 and Sample 2, we sought to replicate previously reported sex differ-
ences in associations between APOE ¢4 and cognitive decline. In Sample
1, there was a significant interaction between male sex, APOE ¢4, and
time on cognition in NHW participants (8 = 0.064, 95% Cl: 0.007 to
0.120, p =.03; Table S4; Figure 2). Sex-stratified analyses demonstrated
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TABLE 2 Sex-specific associations between APOE 2 (vs. APOE £3/£3) and longitudinal cognition in non-Hispanic White participants.

Sample 1 (NACC & ROS/MAP) NACC

Sample 2 (ADNI &

ROS/MAP Prevent-AD)

Analyses B(95% Cl) p B(95% Cl)
Three-way interaction:

Sex x APOE €2 (vs.
£3/e3) x time

0.097(0.023-0.172) .01

Sex-stratified two-way interactions:

APOE 2 (vs. £3/c3) 0.096 (0.037-0.155)  .001
X time in men

APOE ¢2 (vs.e3/e3) —0.001(—0.044-0.043) .97
X time in women

Genotype-stratified two-way interaction:

Male sex x time in 0.120(0.051-0.190) .001

APOE €2 carriers

Male sex x timein  —0.000 (—0.031-0.030) .99
APOE £3/e3

carriers

0.081(0.010-0.152)

0.074 (0.020-0.128)

—0.008 (—0.051-0.035) .71

0.095(0.028-0.161)

—0.005 (—0.033-0.024)

p B(95% Cl) p B(95% Cl) p

.02 0.127(-0.069-0.323) .20 0.195(0.006-0.385) .04

.008 0.149(-0.022-0.319) .09 0.093(—0.056-0.243) .22

0.012(0.089-0.114) .81 —0.104(-0.228-0.020) .10

.005 0.191(0.012-0.371) .04 0.160(—0.002-0.321) .05

.75 0.038(-0.044-0.121) .36 —0.009(-0.091-0.074) .84

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; Cl: confidence interval; MAP, Memory Aging Project; NACC, National Alzheimer’s
Coordinating Center; Prevent-AD, Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease; ROS: Religious Orders Study.

NHW participants, Sample 1
(NACC & ROS/MAP)

Men | | Women |
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FIGURE 2 Three-way interaction between sex, APOE, and time on
cognitive decline in non-Hispanic White (NHW) participants in Sample
1 (NACC & ROS/MAP). Plots depict marginal effects, showing change
in cognition (standardized score) over time, stratified by sex and
genotype (APOE 4 plot not shown). In sex-stratified analyses, men
carrying APOE 2 were more protected against decline than men
carrying APOE ¢3/e3. In women, APOE 2 was no more protective than
APOE £3/€3. In genotype-stratified analyses, men carrying APOE €2
were more protected against decline than women carrying APOE ¢2.
By contrast, rates of decline did not differ between men and women
APOE £3/e3 carriers. The models are adjusted for covariates. Shaded
regions represent 95% confidence intervals.

that APOE ¢4 (vs. APOE £3/:3) was more strongly associated with cogni-
tive declinein women (8 =-0.192,95% Cl: —0.227 to —0.158,p <.001;
Table S4) than men (8 = —0.127, 95% Cl: —0.171 to —0.083, p < .001;
Table S4). A genotype-stratified analysis showed that men with APOE
¢4 declined more slowly than women with APOE ¢4 (3 = 0.053, 95% Cl:
0.002 to 0.104, p = .04; Table S4; Figure S6). These same findings were
not observed in Sample 2, as the interaction between male sex, APOE
¢4, and time on longitudinal cognition was not significant (3 = 0.041,
95% Cl: —0.095t00.177,p = .56; Table S7; Figures 2 and S7).

4 | DISCUSSION

Across two independent samples of cognitively unimpaired NHW
participants (Sample 1: NACC and ROS/MAP, Sample 2: ADNI and
Prevent-AD), we found that men with APOE ¢2 were more protected
against cognitive decline compared to both men with APOE £3/¢3 and
women with APOE ¢2. Notably, no sex differences were observed
among APOE £3/e3 carriers. Analyses performed separately in NACC
and ROS/MAP showed the same pattern of male-specific protection in
APOE ¢2 carriers. In both Sample 1 and Sample 2, the magnitude of the
sex-specific effect of APOE ¢2 on cognitive decline was generally more
pronounced at older ages when risk for AD is higher.3? The replication
of these findings in cognitively unimpaired NHW adults across sev-
eral data sources provide compelling evidence that APOE €2 protects
men but not women against cognitive decline. In contrast, we observed
no sex-specific associations in NHB participants, and APOE £2 was not
significantly associated with attenuated cognitive decline (relative to
€3/e3) in men or women.

The biological mechanisms driving the observed sex differences
in the NHW participants are unclear. One possibility may relate to
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NHW participants, Sample 2

(ADNI & PAD)
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FIGURE 3 Three-way interaction between sex, APOE, and time on
cognitive decline in non-Hispanic White (NHW) participants in Sample
2 (ADNI & Prevent-AD). Plots depict marginal effects, showing change
in cognition (standardized score) over time, stratified by sex and
genotype (APOE ¢4 plot not shown). Sex-stratified analyses were not
significant. In genotype-stratified analyses, men carrying APOE 2
were more protected against decline than women carrying APOE €2,
whereas the rates of decline did not differ between men and women
carrying APOE £3/£3. The models are adjusted for covariates. Shaded
regions represent 95% confidence intervals.

sex hormones, which regulate ApoE protein synthesis.*® Estrogen
upregulates ApoE synthesis,*%4! and like other metabolic and neuro-
logical systems,*243 estrogen-mediated APOE processes may become
disrupted around menopause when estrogen levels decline. If so,
APOE ¢2 protection against AD pathology and its downstream cog-
nitive effects may be reduced in postmenopausal women. Additional
research is needed to elucidate the biological mechanisms underlying
the sex-specific effects of APOE ¢2.

The finding of sex-specific associations between APOE ¢2 and cog-
nitive decline complements evidence that women (vs. men) carrying
APOE &4 are at disproportionately higher risk for AD.1164445 We
replicated this finding in NHW and NHB from Sample 1 (but not Sam-
ple 2), observing that women with APOE ¢4 had faster rates of cognitive
decline than their counterpart men. Interestingly, in NHW participants
from Sample 1, the effect size of the three-way interaction of APOE 2,
sex, and time on cognitive decline (8 = 0.097) was greater than that
of the equivalent interaction for APOE ¢4 (8 = 0.064). This suggests
that sex-specific protective effects of APOE ¢2 may represent an impor-
tant yet overlooked contribution to sex disparities in cognitive and AD
outcomes.

It is not clear why we did not observe significant associations
between APOE ¢2 and attenuated cognitive decline in NHB partici-
pants of either sex. Previous research demonstrates that pathological

drivers of cognitive decline may differ across races.*¢4” It is possi-

ble that in NHB participants, associations of APOE ¢2 with cognition
(including potential sex-specific associations) are obscured by more
salient predictors of cognitive decline. Alternatively, APOE ¢2 protec-
tion against AD may be weaker or non-existent in NHB persons. This
idea is consistent with previous research in Black persons,*84? and
broader evidence that APOE genotypes differentially impact cognition
across racial and ethnic groups.19:24-26.50

Despite observing no significant associations of APOE 2 with atten-
uated cognitive decline across both sexes in NHB participants, APOE
€2 was more prevalent in NHB compared to NHW participants. This
difference aligns with existing reports of racial/ethnic differences in
APOE carriage!?24°1 and is consistent with broader observations
that allele frequencies vary across populations of different ancestral
backgrounds.2! Future work should seek to further clarify sex-specific
APOE effects in diverse cohorts.

In the NHW participants, there were some notable differences in
the effect sizes across data sources. Specifically, the effect size of the
three-way interaction of APOE ¢2, sex, and time was larger in ROS/MAP
and Sample 2 (ADNI and Prevent-AD) compared to NACC. Similarly,
the effect size of the two-way interaction between APOE ¢2 and time
in men was larger in ROS/MAP and Sample 2 (ADNI and Prevent-AD)
compared to NACC. The reasons for these differences remain unclear
but may relate to selection bias. For example, ROS/MAP participants
are generally older than NACC participants (mean of 77 vs. 72 years
old) and have more follow-up data (median of 10 vs. 5 visits). Given our
findings that sex-specific APOE ¢2 effects become more salient at older
ages, we might expect larger effects in older samples, particularly if
they have more follow-up data. Additionally, all participants in Prevent-
AD have either a parent or multiple siblings with AD.32 Therefore, the
larger effects observed in Sample 2 may suggest that sex-specific APOE
effects are more pronounced in a sample enriched with familial AD risk.

The major strength of this study is the replication of sex-specific
findings across two independent samples of pooled data (as well as
separately in NACC and ROS/MAP). This is particularly notable given
different sampling procedures, demographic characteristics, cogni-
tive tests, and follow-up times across the studies. The present study
has several limitations. First, study participants are generally well-
educated, which may limit the generalizability of our findings. Second,
since whole genome sequencing or equivalent data were not available
for many study participants, we were unable to adjust our analyses
for genetic principal components (to account for possible population
admixture). This approach is ideal, as there may be multiple genetic
subpopulations in our samples. Third, in Sample 2, there were too few
NHB participants (N = 52) to perform a replication analysis. It will be
important for future research to replicate and extend the present find-
ings to other diverse groups. Fourth, while we verified that the NHW
and NHB samples aligned with Hardy-Weinberg Equilibrium expecta-
tions, the recorded APOE genotypes may contain miscalls, which may
bias effect estimates, particularly in smaller APOE genotype stratified
samples. Fifth, a challenge to studying sex differences in AD is that
women are more likely than men to survive to older ages.> When a
gene, such as APOE, has pleiotropic effects on risk for mortality and

AD,>?2 this survival bias can cause spurious associations. Finally, given
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the rarity of APOE €2 homozygosity, we were unable to investigate sex
differences in allelic dose effects.

5 | CONCLUSION

Our results clarify the longstanding view that APOE 2 protects against
AD.11.27:50.5354 Among NHW adults, we found that APOE 2 protects
men but not women against cognitive decline. These findings have
important implications for understanding the biological drivers of sex
differences in AD risk, which is crucial for developing sex-specific
strategies to prevent and treat AD dementia. Large and diverse sam-
ples are needed to replicate the present findings and to further clarify
the sex-specific effects of APOE ¢2 on risk for AD.
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